Density Functional Theory Study of the Mechanism and Origins

 of Stereoselectivity in the Asymmetric Simmons-Smith Cyclopropanation with Charette Chiral Dioxaborolane Ligand [Journal of the American Chemical Society 2011, 133, 9343-9353. DOI: 10.1021/ja111330z]. Tao Wang, Yong Liang, and Zhi-Xiang Yu*Pages 9345-9347. Our drawings in Figures $1-3$ using $1 / 4 \mathrm{~mol}$ of 2-T as the reference point are not correct mathematically. The corrected Figures $1-3$, using 1 mol of $2-\mathrm{T}$ as the reference point, are presented here. To reduce the overestimation of the entropy contribution in solution for the bimolecular processes (the dimerizations of 2-M to 2-D and 2-D to 2-T), the entropy values in solution from 2-M to 2-D and 2-D to 2-T are estimated to be 50\% of their originally computed gas-phase values (for details, see the Supporting Information). Therefore, aggregates 2-D (2 mol) and 2-T (1 mol) in dichloromethane are more stable than 2-M (4 mol) by 37.2 and 40.2 kcal in terms of free energy, respectively. The background cyclopropanation requires an overall activation free energy of $16.5 \mathrm{kcal} / \mathrm{mol}$ (from 2-T to TS-2-T). In the absence of ligand $\mathbf{1}$, tetramer 2-T is the most stable and reactive cyclopropanation precursor. However, in the presence of a stoichiometric amount of ligand $\mathbf{1}(4 \mathrm{~mol})$, tetramer 2-T $(1 \mathrm{~mol})$ can be completely transformed to the chiral complex 2-L-O (4 mol) because this process is exergonic by 15.7 kcal in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the overall activation free energy for the generation of the racemic cyclopropane product via TS-2-T is $32.2 \mathrm{kcal} / \mathrm{mol}(2-\mathrm{L}-\mathrm{O} \rightarrow 2-\mathrm{T} \rightarrow$ TS-2-T).

These corrections do not affect the conclusions in the original paper. We thank Prof. Daniel A. Singleton (Texas A\&M University) for calling these to our attention.

ASSOCIATED CONTENT

(s) Supporting Information. Computational details, full citation of ref 11, and Cartesian coordinates of computed stationary points [corrected]. This material is available free of charge via the Internet at http://pubs.acs.org.

DOI: 10.1021/ja205871t
Published on Web 08/04/2011

Figure 1. DFT-computed free energy surfaces for the cyclopropanation reactions of monomer 2-M, dimer 2-D, and tetramer 2-T $\left(\mathrm{R}=(E)-\mathrm{PhCH}=\mathrm{CHCH}_{2}\right)$.

2-L-O $d(\mathrm{Zn}, \mathrm{C})=1.98$ $d(\mathrm{Zn}, \mathrm{O} 1)=2.03 \AA$
$d(\mathrm{Zn}, \mathrm{O} 2)=2.13 \AA$ $d(\mathrm{Zn}, \mathrm{O} 2)=2.13 \AA$

ΔG_{DCM}	-3.9
$\left(\Delta G_{\mathrm{gas}}\right)$	(-5.0)
$\left[\Delta H_{\mathrm{DCM}}\right.$	$[-8.6]$
$\mathrm{kcal} / \mathrm{mol}$	

12.8
(12.3)
$[7.5]$

$d(\mathrm{Zn}, \mathrm{C})=1.96 \mathrm{~A}$ $d(\mathrm{Zn}, \mathrm{O} 1)=1.97 \mathrm{~A}$ $d(\mathrm{Zn}, \mathrm{O})=2.02 \AA$

18.6 (19.7) $[16.3]$

Figure 2. DFT-optimized structures of iodomethylzinc allyloxide complexes 2-T, 2-L-O, 2-L-N, and 2-L' (carbon, gray; hydrogen, white; oxygen, red; nitrogen, blue; boron, green; zinc, orange; iodine, purple; energies are given in kcal/mol; $\left.\mathrm{R}=(E)-\mathrm{PhCH}=\mathrm{CHCH}_{2}\right)$.

Figure 3. DFT-computed free energy surfaces for the cyclopropanation reactions of tetramer 2-T and the chiral zinc complex 2-L-O $(\mathrm{R}=(E)-\mathrm{PhCH}=\mathrm{CHCH} 2)$.

